Generalised Mycielski Graphs and the Borsuk–Ulam Theorem

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalised Mycielski Graphs as Topological Cliques

We prove that the coindex of the box complex B(H) of a graph H can be measured by the generalised Mycielski graphs which admit a homomorphism to it. As a consequence, we exhibit for every graph H a system of linear equations solvable in polynomial time, with the following properties: If the system has no solutions, then coind(B(H)) + 2 ≤ 3; if the system has solutions, then χ(H) ≥ 4.

متن کامل

Generalised Mycielski Graphs and Bounds on Chromatic Numbers

We prove that the coindex of the box complex B(H) of a graph H can be measured by the generalised Mycielski graphs which admit a homomorphism to it. As a consequence, we exhibit for every graph H a system of linear equations solvable in polynomial time, with the following properties: If the system has no solutions, then coind(B(H))+2 ≤ 3; if the system has solutions, then χ(H) ≥ 4. We generalis...

متن کامل

Hall ratio of the Mycielski graphs

Let n(G) denote the number of vertices of a graph G and let (G) be the independence number of G, the maximum number of pairwise nonadjacent vertices of G. The Hall ratio of a graph G is defined by (G)=max { n(H) (H) : H ⊆ G } , where the maximum is taken over all induced subgraphs H of G. It is obvious that every graph G satisfies (G) (G) (G) where and denote the clique number and the chromatic...

متن کامل

Circular Chromatic Number and Mycielski Graphs

As a natural generalization of graph coloring, Vince introduced the star chromatic number of a graph G and denoted it by χ∗(G). Later, Zhu called it circular chromatic number and denoted it by χc(G). Let χ(G) be the chromatic number of G. In this paper, it is shown that if the complement of G is non-hamiltonian, then χc(G)=χ(G). Denote by M(G) the Mycielski graph of G. Recursively define Mm(G)=...

متن کامل

Backbone Colorings and Generalized Mycielski Graphs

For a graph G and its spanning tree T the backbone chromatic number, BBC(G,T ), is defined as the minimum k such that there exists a coloring c : V (G) → {1, 2, . . . , k} satisfying |c(u) − c(v)| ≥ 1 if uv ∈ E(G) and |c(u)− c(v)| ≥ 2 if uv ∈ E(T ). Broersma et al. [1] asked whether there exists a constant c such that for every triangle-free graphG with an arbitrary spanning tree T the inequali...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2019

ISSN: 1077-8926

DOI: 10.37236/8462